Quadratic zero-difference balanced functions, APN functions and strongly regular graphs
نویسندگان
چکیده
Let F be a function from Fpn to itself and δ a positive integer. F is called zerodifference δ-balanced if the equation F (x+a)−F (x) = 0 has exactly δ solutions for all nonzero a ∈ Fpn . As a particular case, all known quadratic planar functions are zero-difference 1-balanced; and some quadratic APN functions over F2n are zerodifference 2-balanced. In this paper, we study the relationship between this notion and differential uniformity; we show that all quadratic zero-difference δ-balanced functions are differentially δ-uniform and we investigate in particular such functions with the form F = G(x), where gcd(d, p − 1) = δ+ 1 and where the restriction of G to the set of all nonzero (δ + 1)-th powers in Fpn is an injection. We introduce new families of zero-difference p-balanced functions. More interestingly, we show that the image set of such functions is a regular partial difference set, and hence yields strongly regular graphs; this generalizes the constructions of strongly regular graphs using planar functions by Weng et al. Using recently discovered quadratic APN functions on F28 , we obtain 15 new (256, 85, 24, 30) negative Latin square type strongly regular graphs.
منابع مشابه
Schemes, Codes and Quadratic Zero-Difference Balanced Functions
Zero-difference balanced (ZDB) functions were introduced by Ding for the constructions of optimal and perfect systems of sets and of optimal constant composition codes. In order to be used in these two areas of application, ZDB functions have to be defined on cyclic groups. In this paper, we investigate quadratic ZDB functions from the additive group of Fpn to itself of the form G(x t+1), where...
متن کاملA construction of bent functions from plateaued functions
In this presentation a technique for constructing bent functions from plateaued functions is introduced. This generalizes earlier techniques for constructing bent from near-bent functions. Analysing the Fourier spectrum of quadratic functions we then can construct weakly regular as well as non-weakly regular bent functions both in even and odd dimension. This type of functions yield the first k...
متن کاملStrongly regular graphs constructed from p-ary bent functions
In this paper, we generalize the construction of strongly regular graphs in Tan et al. (J. Comb. Theory, Ser. A 117:668–682, 2010) from ternary bent functions to p-ary bent functions, where p is an odd prime. We obtain strongly regular graphs with three types of parameters. Using certain non-quadratic p-ary bent functions, our constructions can give rise to new strongly regular graphs for small...
متن کاملOn the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کاملOn characterizations of weakly $e$-irresolute functions
The aim of this paper is to introduce and obtain some characterizations of weakly $e$-irresolute functions by means of $e$-open sets defined by Ekici [6]. Also, we look into further properties relationships between weak $e$-irresoluteness and separation axioms and completely $e$-closed graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 78 شماره
صفحات -
تاریخ انتشار 2016